

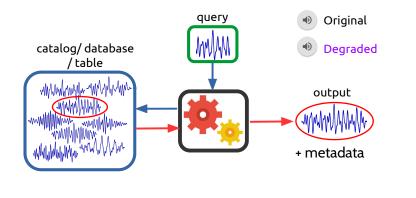
21st International Conference on Content-based Multimedia Indexing,

September 18-20, Reykjavik, Iceland

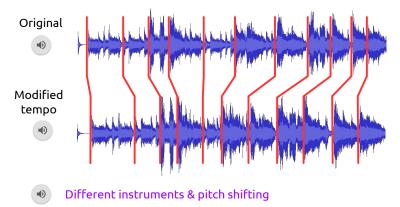
Invariant Audio Prints for Music Indexing and Alignment

<u>Rémi Mignot</u>¹, Geoffroy Peeters²

¹ STMS Lab – IRCAM, Sorbonne Université, CNRS (UMR-9912), Paris, France


² LTCI - Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

Introduction


• Audio *Indexing*

Find the "**reference song**" from a **music catalog** based on the signal content of a given **audio excerpt**

• Audio-to-audio *Alignment*

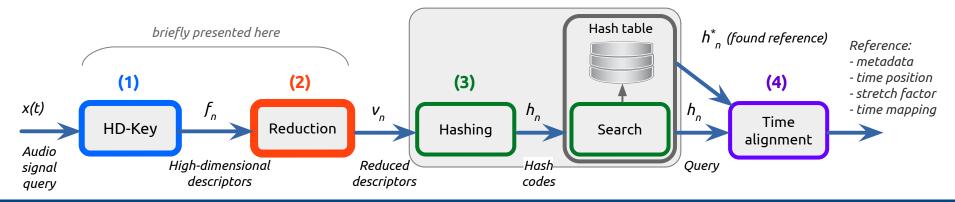
Search the **time mapping** between **two occurrences** of the same music (covers e.g.)

• <u>Robustness</u>: find a solution which still works when the query is *transformed / degraded*

 \rightarrow time stretching, pitch shifting, noise addition, distortion, audio effects, and different instruments (for alignment)

• <u>Remark</u>: we use the same approach for both tasks.

Method overview

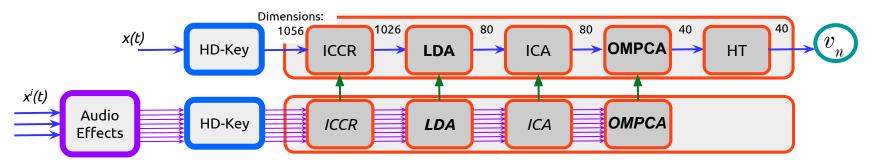

• Process chain

Derivation of codes that are: ✓ robust to transformations / degradations and

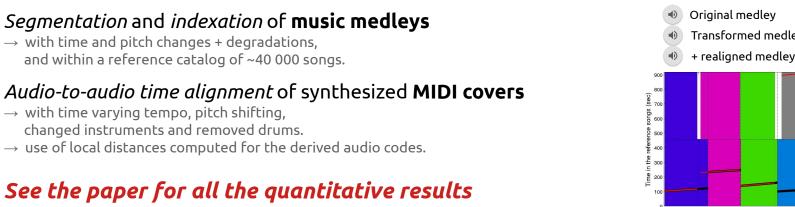
relevant to the musical content (unlike spectrogram *peak-pairs* methods)

- (1) <u>High-dimensional audio keys</u> (1056)
- (2) <u>Dimension reduction</u> (40)
- (3) <u>Hashing</u>
- (4) <u>Time alignment</u>

-) \rightarrow design of **audio descriptors** robust to some transformations,
 - \rightarrow *learning* of a linear projection robust to degradations,
 - \rightarrow hash codes tolerant to bit corruption (LSH-based),
 - ightarrow DTW-based alignment to estimate the time mapping.


(1) High-dimensional Audio Keys

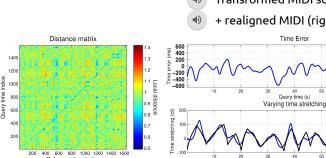
- Audio descriptors
 - ✓ relevant to the musical content
 → inspired by audio classification (modulation spectrum).
 - ✓ robust to transformations by design:
 - Manipulations of sub-spectrograms
 - Log. scale of frequencies and time (d),
 - Frequency *band* splitting (e),
 - . Amplitude transformation (f)
 - . Magnitude of 2D-Discrete Fourier Transform (g).
 - Based on properties of:
 - Logarithmic function,
 - . Shift invariance of | DFT |,
 - . Amplitude change,
 - → The descriptors are *robust by design* to: <u>Pitch</u> and <u>time changes</u>, and <u>noise</u>, <u>filtering</u>,
 - \rightarrow dimension 1056...

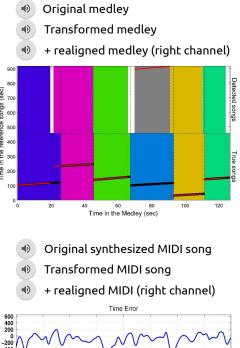


(2) Robust dimensional reduction

- Reduction of the dimensions
 - Chain of *linear transformations* :
 - . Discriminant analyses, or Independent Component Analyses, and Orthogonal projections,
 - Dimension reduction $1056 \rightarrow 40$,
 - with output variables v_n with properties:
 - . centered, normalized, and mutually uncorrelated,
 - . *robust* to transformations/degradations, and
 - *discriminant* to the original signal.
 - Training dataset:
 - → many *transformed versions* of music examples (~*data augmentation*).

Two experiments (see the paper)


• Overall conclusions:


Audio indexing:

not as good as other approaches for some degradations (e.g. noise), but still robust, especially for pitch and time changes.

✓ Audio-to-audio time alignment:

The results prove that the derived audio codes are quite robust to transformations and they are representative to the musical content, even with different instruments.

Ground truth

Bonus experiment

• Time alignment of an acoustic guitar cover of *Little Wing* (Jimi Hendrix).

Original recording "Little Wing" (Jimi Hendrix)

Tempo: ~70 BPM

<u>Acoustic guitar + voice cover</u> "Little Wing" by Corey Heuvel

Tempo: ~60 BPM with accelerations/decelerations, some longer transitions, quite different scores but respected structure (at the beginning)

Bonus experiment

- Time alignment of an acoustic guitar cover of *Little Wing* (Jimi Hendrix).
 - 1. <u>Processing</u>: Time alignment between the two recordings based on the derived audio prints and DTW.
 - 2. <u>Realignment</u>: The original recording of Hendrix is then realigned to the cover, and inserted into the video.
 - <u>Remark</u>: longer transitions, e.g. between the 2^{nd} verse and the solo, at 1:40. \rightarrow the original is strongly stretched

left channel: unchanged cover sound *right channel*: synchronized original recording

all channels: synchronized original recording

For more details:

- Questions?
- Read the paper #107:
 - · Rémi Mignot & Geoffroy Peeters,
 - "Invariant Audio Prints for Music Indexing and Alignment"
- See the poster this afternoon.