Invariant Audio Prints for Music Indexing and Alignment

<u>Rémi Mignot¹</u>, Geoffroy Peeters²

¹ STMS Lab – IRCAM, Sorbonne Université, CNRS (UMR-9912), Paris, France ² LTCI - Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

Companion webpage

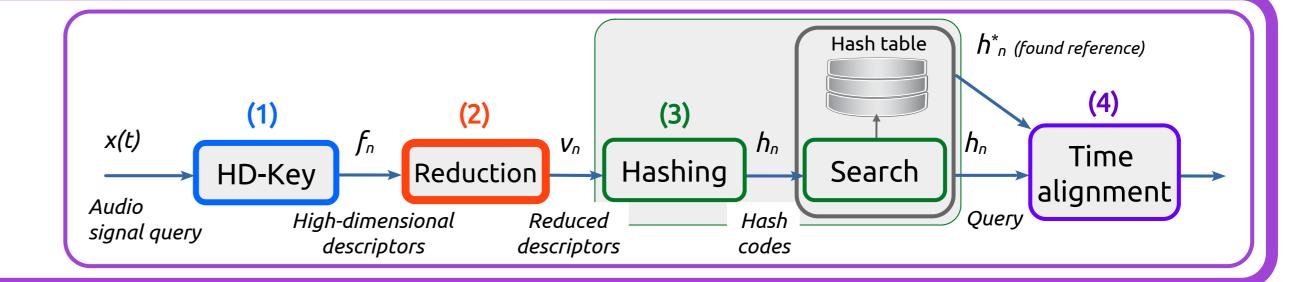
Two tasks

- Audio *Indexing* Find the "**reference song**" from a **music catalog** based on the signal content of a given audio excerpt
- Audio-to-audio *Time Alignment* Search the **time mapping** between **two occurrences** of the same music
- \rightarrow use of the same method for both tasks

Goals

- *Robust* to audio *transformations/degradations*
 - time stretching, pitch shifting, noise addition, distortion, audio effects, and different instruments (for alignment)
- **Relevant** to the **music content**

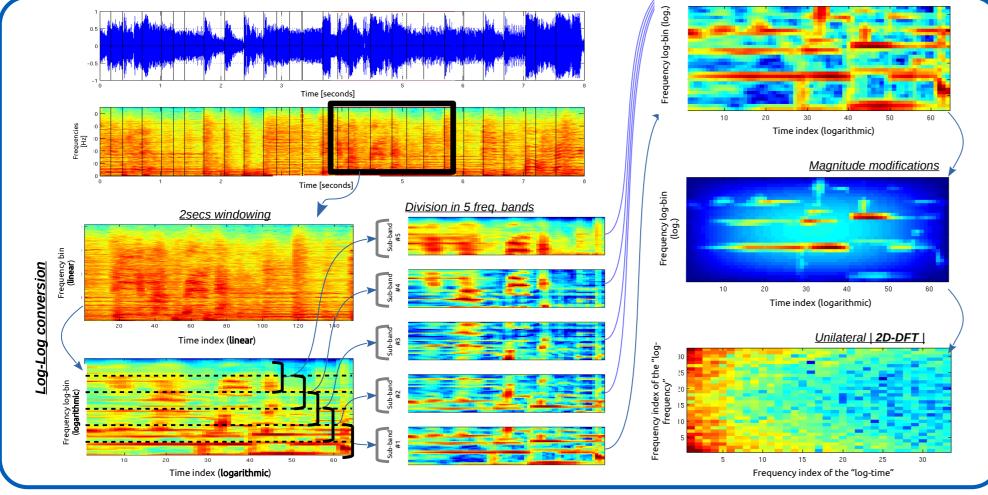
melodies, chords, rhythms and possibly the instrument timbres


 \rightarrow computation of **music distances** based on **audio codes**

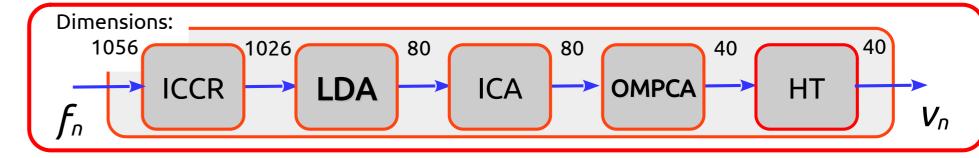
Method overview

- (1) <u>High-dimensional audio keys</u>
- **Robust dimension reduction** (2)
- <u>Approximate Hashing</u> tolerant to bit corruption (LSH-based), (3)
- DTW-based Time alignment to estimate the time mapping. (4)

High-dimensional Audio Keys (1)


(inspired by audio classification) • <u>Audio descriptors</u> → **relevant** to the *music content*, and

Robust dimension reduction (2)


Learning of a *linear transformation* chain *invariant* to degradations

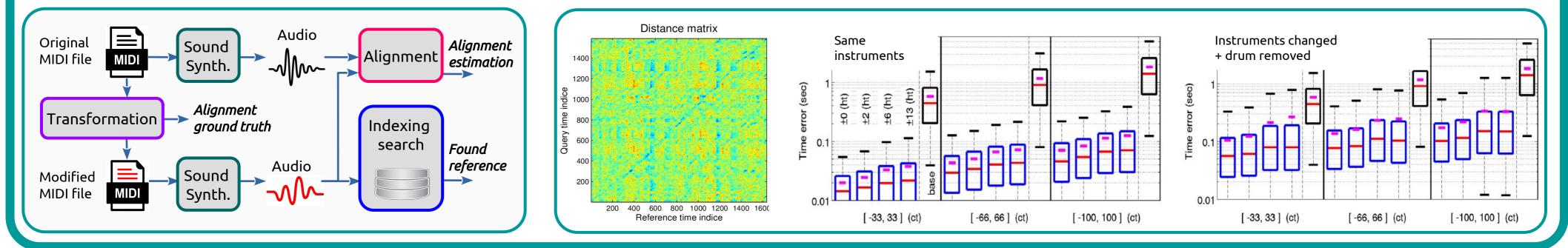
- → robust by design to audio transformations / degradations
- Manipulations of sub-spectrograms:
 - \rightarrow Log. scale of frequencies and time, frequency band splitting, Amplitude transformation, Magnitude of 2D-DFT.

• Based on properties of:

- \rightarrow Log. function, Shift invariance of |DFT|, Amplitude change,
- The descriptors are robust *by design* to:
 - \rightarrow Pitch and time changes, and noise, filtering.

- 1) ICCR (Ill-Conditioned Component Rejection): \rightarrow Remove redundancies
- 2) LDA (Linear Discriminant Analysis): \rightarrow Select robust dimensions
- 3) ICA (Independent Component Analysis):
 - \rightarrow For a uniform filling of hash table because of independency
- 4) **OMPCA** (Orthogonal Mahalanobis PCA):
 - \rightarrow Recover robustness, & preserves decorrelation
- 5) HT (Hadamard Transform):
 - \rightarrow uniform robustness, prepare for hashing, & preserves decorrelation.
- Output variables V_n with properties:
 - centered, normalized, *mutually uncorrelated*, *robust* to transformations, and *discriminant* to the original signal.
- Use of a *Data Augmentation* approach for training (LDA & OMPCA)
 - \rightarrow maximize distances for different original signals, and
 - \rightarrow minimize distances for transformations of the same signal.

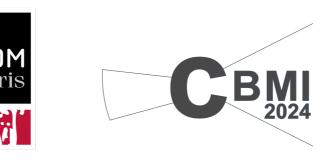
Experiment: Indexing and alignment of "MIDI covers"


MIDI Transformations:

- Time variant tempo : [-33, 33], [-66, 66] and [-100, 100] cents.
- Pitch Shifting :
 - 0, ±2, ±6, ±13 half-tones.
- Instrument change + drum removed
- *Remark:* 33ct \rightarrow x1.25, 66ct \rightarrow x1.58, 100ct \rightarrow x2.

	Time Stretch (cents)	[- 33, 33]				[-66, 66]				[-100, 100]			
	Pitch Shift $(\frac{1}{2} \text{ tones})$	0	± 2	± 6	±13	0	± 2	± 6	± 13	0	± 2	± 6	±13
Same instruments	STEP1: rank (full catalog):	1.0	1.2	4.3	17.9	1.0	1.3	5.7	22.7	1.0	1.4	5.9	29.
	STEP2: rank (over the 200 best):	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1
Changed instruments	STEP1: rank (full catalog):	132.3	174.5	310.1	319.9	128.7	185.6	243.0	301.5	129.5	199.5	274.6	302.
	STEP2: rank (over the 200 best):	2.2	5.0	15.3	17.9	2.6	6.3	16.8	20.5	4.3	10.2	24.9	30.3

Indexing results (full catalog: ~40 000 songs, ranks averaged over 238 tests)


Alignment results (evaluation averaged over 238 tests, baseline = diagonal)

Acknowledgment

This work has been initiated with the BeeMusic Project (FSN-O14703-370483), and continued with the AQUA-Rius project (ANR-22-CE23-0022-01).

CBMI 2024 21st Int. Conf. on Content-based Multimedia Indexing Sept. 18-20, Reykjavik, Iceland